The summaries are free for public
use. The Chronic Liver Disease
Foundation will continue to add and
archive summaries of articles deemed
relevant to CLDF by the Board of
Trustees and its Advisors.
Abstract Details
Biosynthesis of gold nanoparticles and their protective effect towards diabetic nephropathy by inhibition of oxidative stress.
BACKGROUND: Diabetes is an emerging health issue on a global scale, with increasing prevalence rates reported in many countries. Many mechanisms are proposed for diabetic nephropathy, with oxidative stress being the most significant. The effectiveness of gold nanoparticles (AuNPs) in the attenuation of nephropathy and oxidative stress in diabetic mice was assessed in this study.
OBJECTIVE: The aim of this study is to synthesize AuNPs and assess their protective effect towards diabetic nephropathy by inhibition of oxidative stress.
METHODS: The aqueous extract of was employed to synthesize AuNPs. The prepared AuNPs were characterized using a variety of microscopic and spectroscopic techniques. studies were conducted using mice. Streptozotocin (STZ) was employed to induce diabetes in rodents. After 7 days of administration of STZ, anesthesia was given to all animals and blood was collected for the assessment of creatinine and Blood Urea Nitrogen (BUN) levels. Later, kidney tissue was removed at 4 °C and changes in pathology and oxidative stress were assessed.
RESULTS: Nephropathy was confirmed in diabetic mice by the changes in the pathology of kidney tissue along with significant rise in the plasma levels of BUN and creatinine. Additionally, the peroxidation of lipids, formation of Reactive Oxygen Species (ROS), oxidation of glutathione (GSH), concentration of carbonyl protein was also increased in the tissue of kidney of diabetic mice. Oxidative stress in kidney tissue and changes in the pathology of diabetic mice were inhibited significantly (p < 0.05) with the treatment of AuNPs.
CONCLUSION: This study revealed the protective effects of AuNPs over diabetic nephropathy by inhibiting the pathway of oxidative stress. Since, the prepared AuNPs showed improvement over complications of diabetes, they may be believed as a potential gratuitous treatment next to other drugs for reducing blood glucose.