The summaries are free for public
use. The Chronic Liver Disease
Foundation will continue to add and
archive summaries of articles deemed
relevant to CLDF by the Board of
Trustees and its Advisors.
Abstract Details
Integrating manual annotation with deep transfer learning and radiomics for vertebral fracture analysis.
BACKGROUND: Vertebral compression fractures (VCFs) are prevalent in the elderly, often caused by osteoporosis or trauma. Differentiating acute from chronic VCFs is vital for treatment planning, but MRI, the gold standard, is inaccessible for some. However, CT, a more accessible alternative, lacks precision. This study aimed to enhance CT's diagnostic accuracy for VCFs using deep transfer learning (DTL) and radiomics.
METHODS: We retrospectively analyzed 218 VCF patients scanned with CT and MRI within 3 days from Oct 2022 to Feb 2024. MRI categorized VCFs. 3D regions of interest (ROIs) from CT scans underwent feature extraction and DTL modeling. Receiver operating characteristic (ROC) analysis evaluated models, with the best fused with radiomic features via LASSO. AUCs compared via Delong test, and clinical utility assessed by decision curve analysis (DCA).
RESULTS: Patients were split into training (175) and test (43) sets. Traditional radiomics with LR yielded AUCs of 0.973 (training) and 0.869 (test). Optimal DTL modeling improved to 0.992 (training) and 0.941 (test). Feature fusion further boosted AUCs to 1.000 (training) and 0.964 (test). DCA validated its clinical significance.
CONCLUSION: The feature fusion model enhances the differential diagnosis of acute and chronic VCFs, outperforming single-model approaches and offering a valuable decision-support tool for patients unable to undergo spinal MRI.